Trigonometry 9.1/9.2 Explore angle measures and the unit circle

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand radians (F.TF.1)	Can extend thinking beyond the standard, including tasks that may involve one of the	Explain and use the relationship between radian measures and degrees/arc lengths to solve problems	Use the relationship between radian measures and degrees/arc lengths to solve problems	Convert between radians and degrees	Little evidence of reasoning or
Create the unit circle (F.TF.2, F.TF.3)	 following: Designing Connecting Synthesizing Applying Justifying 	Use special triangles to determine <u>and explain</u> the values of sine, cosine, tangent for <u>anything</u> <u>between 0 and 2π</u> on the unit circle	Use special right triangles to determine the values of sine, cosine, tangent for $\underline{0}$, $\pi/6$, $\pi/4$, $\pi/3$ and $\pi/2$ on the unit circle	Use special right triangles to determine the values of sine, cosine and tangent <u>for</u> $\pi/6, \pi/4$ and $\pi/3$ on the unit circle	application to solve the problem Does not meet the criteria in
Pythagorean identity of sine and cosine (F.TF.8)	 Critiquing Analyzing Creating Proving 	<u>Prove</u> the Pythagorean identity $sin^{2}(\theta) + cos^{2}(\theta) =$ 1 and use it to find $sin(\theta)$, $cos(\theta)$, and $tan(\theta)$	Use the Pythagorean identity $sin^2(\theta) + cos^2(\theta) =$ 1 to find $sin(\theta), cos(\theta),$ <u>and</u> $tan(\theta)$	Use the Pythagorean identity $sin^{2}(\theta) + cos^{2}(\theta) =$ 1 to find $sin(\theta), cos(\theta), or$ $tan(\theta)$	a level 1

- F.TF.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
- F.TF.2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
- F.TF.3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x$, $\pi+x$, and $2\pi-x$ in terms of their values for x, where x is any real number.
- F.TF.8 Prove the Pythagorean identity $sin^2(\theta) + cos^2(\theta) = 1$ and use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ and the quadrant of the angle.

Summatively assess after completing Explore and Investigation 1 in Concept 9.2 The remaining portion of Concept 9.2 is within Represent and Apply Trigonometric Functions

Trigonometry 9.2/9.3 Represent and apply trigonometric functions

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create trigonometric functions (F.TF.5)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Given a specified amplitude, frequency, and midline for a real world situation, <u>create a sine,</u> <u>cosine and/or tangent</u> <u>function</u>	Given the sine, cosine or tangent function for a real world situation, identify the amplitude, frequency <u>and</u> midline	Given the sine, cosine or tangent function for a real world situation, identify the amplitude, frequency <u>or</u> midline	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Graph and identify key features of trig functions (F.IF.7e)	 Designing Connecting Synthesizing Applying Justifying Critiquing 	Graph a sine, cosine, <u>and</u> <u>tangent</u> function, with an amplitude change, period change, and midline change.	Graph a sine and cosine function with an amplitude change, period change, <u>and</u> midline change.	Graph a sine and cosine function with an amplitude change, period change, <u>or</u> midline change.	
Compare key features (F.IF.9)	 Analyzing Creating Proving 	Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions in context of a situation Key features include: midline amplitude minimums and maximums	Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: midline amplitude <u>minimum and</u> <u>maximums</u> increasing or <u>decreasing</u>	Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: midline amplitude	

F.TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

F.IF.7e Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.